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1 Introduction
In 1865, Maxwell discovered four equations which describes the dynamics of electromag-
netic fields ~E and ~B, called Maxwell’s equations:

~∇ · ~E =
ρ

ε0
, ~∇× ~E = −

∂ ~B
∂t

,

~∇ · ~B = 0, ~∇× ~B = µ0 *
,
~J + ε

∂ ~B
∂t

+
-

,
(1.1)

where ε0 is the electric permittivity in vacuum, µ0 the magnetic permiability in vacuum,ρ
a charge density, and ~J a current. Then the corresponding action of the Maxwell theory is

S = −
1

4e2

∫
d4x( ~E2 − ~B2). (1.2)

In equation (1.2), we denote e2 which is usually omitted, to emphasize the charge. With
proper field redefinition, we can rewrite this equation with the fine structure constant
α = e2/4πε0 ≈ 1/137 (where h̄ = c = 1.):

S = −
1
α

∫
d4x( ~E2 − ~B2). (1.3)

The action (1.3) is the classical action. However, the fundamental theory which
describes the nature is a quantum theory, and the classical thoery is a macroscopic limit
of corresponding quantum theory. So we can consider the "quantization" of action (1.3).
Here, "" implies that we abused the term quantizaiton; the following description is not
actually a quantization, but it is description we use in quantum field theory(QFT).

S = −
1

4e2

∫
d4x [(FµνF µν − AµJ µ) + (matter)] . (1.4)

The first term implies the dynamics of photon, the second term AµJ µ is the interaction
term between photon and charge, and matter term is about the dynamics of charge. For
example, if we consider an electron which is a fermion, the action is written as

S =
∫

d4
[
−

1
4e2 FµνF µν + ψ̄(iγµ∂µ + iγµAµ −m)ψ

]
. (1.5)

The second term of the action (1.5) gives equation of motion iγµ(∂µ + Aµ)ψ = mψ, which
is known as Dirac equation.

We now have the theory and we need to check wheter it suite with the experiemnts
from the accelerator. To do so, we first have to calculate scattering amplitudes with the
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famous tool called Feynman diagram:

FµνF µν = 〈Aµ(x)Aν (y)〉 Photon correlation function

ψ̄(iγµ∂µ)ψ = 〈ψ̄ψ〉 Fermion correlation function

ψ̄(iγµAµ)ψ = 〈Aψ̄ψ〉 Vertex.

(1.6)

Let us consider the Compton scattering as an example. The Compton scattering is a
scattering betweeen an electron and photon. The corresponding Feynman diagrams are

= + α

*....
,

+

+////
-

+ α2(· · · ) (1.7)

where α is the fine structure constant, that is, a coupling constant. The first term of the
right hand side is a diagram that occurs no scattering. The second term has scattering
however, it is just a classical effect and called tree-level diagram. All the quantum effects
are in α2 term or higher, and they contains loop diagram which can be drawn as

(1.8)

The problem is that this kind of diagrams diverge, which is not physical at all. For this
diagram, you will meet integral in order of

∫
d4k 1

k4 which gives log k and diverges as
k → ∞. However, in this lecture, we will omit all the detailed calculation and take the
result that the loop diagrams which give quantum corrections diverge.

This problem was solved by very powerful method called Renormalisation which is
developed by Kramers, Bethe, Schwinger, Feynman, Tomonaga and Dyson in 1947 1949.
The key idea of renormalisation is that the infinity we have from the loop diagrams are
came from the hidden infinities that the theory has. So the renormalisation is basically
extracting infinities from our theory and subtract them by renormalising all coupling
constants and fields in original(bare) Lagrangian. For example, let us consider the action
(1.5). Let us denote the bare coupling constants and fields with subscript(or superscript) B,
and renormalised coupling constants and fields are denoted with subscript(or superscript)
R.

ψB = z1/2
2 ψR AB

µ = z1/2
3 AR

µ mB = zmmR eB = zeeR (1.9)

In fact, z2 = z3 and from the relation between eB and eR, we can find the relation
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between αB and αR. All zi could be written

zi = 1 + δi (1.10)

where δi called counterterm. With this expansion, for example,

ψ̄BmBψB = (1 +
1
2
δ2)(1 + δm)(1 +

1
2
δ2)ψ̄RmRψR

≈ ψ̄RmRψR + (δ2 + δm)ψ̄RmRψR.

Then we have infinities came from the first term, but those infinities are killed by the
infinities from the counter terms. In this context, the physical quantities that we observed
are just substraction betweeen two infinities.

This does not look so convincing, that is, it doesn’t look natural but highly artificial.
In fact, there is a crucial note on renormalisation. It is natural to introduce two energy
scales: cut-off Λ and renormalisation sacle µ. As the consequence of renormalisation,
all parameters depend on the scale µ, that is, the coupling constants are not actulally the
constant:

e2
eff(−p2) = e2

eff(µ)

1 +

e2
eff(µ)

12π2 log
−p2

µ2


(1.11)

The physical intuition of renormalisation was developed by Kenneth Wilson in 1971.
He found that we can understand renormalisation in the context of coarse-graining.

2 Ising Model in Various Dimensions
Ising model is a model introduced by Ernst Ising in 1924, describing ferromagnetism by
spin lattice system. The Hamiltonian of Ising model is written as

H (si; {ki}) = −
1
β

∑
{n}

k (n)σ(n)
i(n) , (2.1)

where σ is called local operator and k as a coupling constant. Ising model consider
the interaction between nearest neighbors, so we only consider n = 1 and n = 2 terms.
However, the other terms will be regenerated after renormalisation. The terms of n = 1
and n = 2 are

n = 1 : k (1)σ(1)
i = hsi

n = 2 ” k (2)σ(2)
i = Jsisi+1,

(2.2)

where h is Zeeman coupling and J is exchange interaction coupling constant. For J > 0,
the system is ferromagnetic and for J < 0, antiferromagnetic. The Hamitonian (2.1) is
then written as

H (si; J, h) = −
h
β

N∑
i=1

si −
J
β

N−1∑
i=1

sisi+1. (2.3)
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(a) Ground state (b) First excited state

Figure 1: 1D Ising Model

The corresponding partition function of (2.3) is

Z (J, h,T ) =
∑

s1=±1
· · ·
∑

sN=±1
e−βH (si ;J,h) = e−βF (J,h,T ), (2.4)

where F (J, h,T ) is free energy.

2.1 1D Ising Model
Let us start with 1D case first. The most efficient way to describe this model is defining
magnetization:

m =
1
N

N∑
i=1
〈si〉. (2.5)

For h ≈ 0, the ground state is the state that all the spins are aligned in the same direction,
and the first excited state is the case that the spins are flipped at one point called domain
wall (Figure 1). The ground state has energy E0 = −N J, entropy S0 = −k logΩ = 0
and F0 = E0 − T S0 = −N J. For the first excited state, the energy is E1 = −(N −
1)J + J = −J (N − 2), entropy S1 = kB log N , magnetization m = 0 and free energy
F1 = −J (N − 2) − kBT log N . The difference of the free energy is then

∆F = F1 − F0 = 2J − kBT log N . (2.6)

If we take a thermodynamic limit, that is, N → ∞,

∆F u −kBT log N < 0 (2.7)

which implies that there is no phase transition at finite temperature in 1D Ising model.

2.2 2D Ising Model
Next we consider the 2D Ising model. The 2D case is basically the same as 1D Ising
model, but now we should consider 2 dimensional lattice. The (figure 2) is denoting the
first excited state of 2D Ising model, where the dotted line denotes the domain wall. In
this case, the difference of energy, entropy and free energy between the ground state and
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Figure 2: The first excited state of 2D Ising model

the first excited state is that

∆E = 2Jn

∆S u kB log 3n In general,kB log(z − 1)n

∴ ∆F = 2Jn − kBT log 3n = n[2J − kBT log 3]
(2.8)

where n is the number of misaligned bond and z a coordination number. Roughly, if we
take the thermodynamic limit, that is, N → ∞, n also goes to∞. Therefore, we can safely
approximate n = N in this limit. Then,

∆F u N [2J − kBT log 3] > 0 (2.9)

when T < 2J
kB log 3 ≡ Tc: critical temperature. If T > Tc, then the magnetization m = 0, but

for T < Tc, there can be m , 0. In short, there exists the long range ordering, or phase
transition, for d > 1 and we call dL = 1 as the lower critical dimension.

2.3 Revisit 1D Ising Model
For simplicity, as we did in section 2.1, we will take h = 0. We also apply no periodic
boundary condition, that is,

· · ·s1 s2 sN

Figure 3: 1D Ising model without periodic boundary condition

Then the Hamiltonian and the partition functions are

H = −J
N−1∑
i=1

sisi+1

Z =
∑
s1

· · ·
∑
sN

eJ
∑

si si+1 .
(2.10)
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If we define ηi ≡ sisi+1 (i = 1 · · · N − 1), we can rewrite the partition function,

Z =
∑
η1

· · ·
∑
ηN−1

∑
sN

eJ
∑
ηi

=
∑

sN=±1



∑
η=±1

eJη


N−1

=
∑

sN=±1
(eJ + e−J )N−1 = 2N coshN−1 J

(2.11)

If we redefine J as J = β J̄, the partition function in (2.11) becomes

Z = 2N coshN−1 J̄ β. (2.12)

We can take the thermodynamic limit (N → ∞) to (2.11), then the partition function
and the free energy are written as

Z [J] = 2N coshN J = eJN (1 + e−2J )N

F = −kBT log Z = −N kBT (J + log(1 + e−2J )).
(2.13)

If we define a quantity f a free energy density as

f ≡
F
N
=




−J/β T → 0
−kBT log 2 T → ∞.

(2.14)

In case of the first case, J → ∞ when T → 0 since J = J̄ β, and this makes the log term
zero. For the second case, J → 0 when T → ∞, and this gives log 2 term.

We can calculate other thermodynamical variables with (2.11). For example, the
internal energy U is

U = 〈E〉 = −
∂

∂ β
log Z

= −N kBT J tanh J
(2.15)

and the specific heat C is

C =
dU
dT
= −

1
kBT2

∂U
∂ β
=

N J
kB

sech2 J. (2.16)

Another important quantity that we can calculate is the correlation function G(i, j),
which is defined as

G(i, j) = 〈(si − 〈si〉)(s j〈s j〉)〉 = 〈sis j〉, (2.17)

this is because the magnetization is zero at finite temperature. The correlation function
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G(i, i + 1) is calculated as following:

G(i, i + 1) =
1
Z

∑
{si }

sisi+1eJ1s1s2+···+JN−1sN−1sN

�������J1=···JN−1=J

=
1
Z
∂

∂Ji



∑
{si }

eJ1s1s2+···+JN−1sN−1sN



�������J1=···=JN−1=J

=
∂

∂Ji
log Z [{Ji}]

�����Ji=J
= tanh J.

(2.18)

Likewise, we can calculate G(i, i + 2):

G(i, i + 2) =
1
Z

∂

∂Ji

∂

∂Ji+1



∑
{si }

eJ1s1s2+···+JN−1sN−1sN



�������Ji=J

= tanh2 J. (2.19)

If we do the same calculation iteratively, it can be easily shown that for arbitrary positive
integer j,

G(i, i + j) = tanh j J. (2.20)

Now, let us consider the long range ordering, that is, phase transition. If there exist
such phase transition, then G(i, j) = 1 for all j. Let us define a correlation lenght ξ such
that

G(i, i + j) = e− j/ξ ξ =
1

log coth J
. (2.21)

Physically, ξ is the approximate length for sustaining jth spin information.

· · ·

ξ

· · ·

Figure 4: correlation length

By (2.21), the long range ordering occurs when ξ → ∞. This is equivalent with
log coth J = 0, that is coth J = 1. Since coth∞ = 1, this occurs when β → ∞ or
T → 0. Thus, for finite T , correlation length does not diverge. This coincide well with
our previous result: there is no phase transition in 1D Ising model.
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